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Abstract: This paper presents a new line flow based weighted least absolute value (LFWLAV) technique for 

power systems making use of line flows, bus power injections and bus voltage magnitudes as the measurement 

vector has been suggested and it has been solved through BBO and WIPSO methods. State variables are 

estimated by means of constant, line flow based jacobian matrix developed from the network equations. The 

proposed selection of state variables has been advantageous as the jacobian matrix turns out to be constant 

which reduces the computational burden. Moreover, the suggested technique generates an output which gives a 

suggestion related to the overloaded lines and limit violated buses instantly rather than calculating them 

through separate equations. Weighted Least Squares (WLS) technique has been applied for solving the proposed 

line flow based state equations in the absence as well as presence of bad measurements and the results are 

validated against those obtained using the conventional WLAV technique. The effectiveness of the proposed 

method was examined by computer simulations through three test systems: (1) 14-bus IEEE test system, (2) 30-

bus IEEE test system and (3) 57-bus IEEE test system. Its convergence and calculation time had been 

determined cautiously and when compared with options acquired with the aid of the standard WLAV method. 

The results show that the proposed LFWLAV method spends less execution time than the standard method does 

with similar convergence characteristics. 

Keywords : State Estimation, Weighted Least Absolute value method, Line flow based WLAV, LFWLAV-BBO, 

LFWLAV-WIPSO and Power System. 

 

I. Introduction 
State estimation assumes a significant part in the observing and control of present day power system. 

State estimation techniques are basically data processing algorithms which are applied on power systems to 

obtain the best estimate of current operating state from the available set of redundant measurements and network 

topology information. In 1968, Fred C. Schweppe introduced state estimation to the power system. The 

mathematical model and the general state estimation are explained in [1]. In [2] an approximate mathematical 

model and solution for detection and identification are mentioned. Different usage issues connected with 

dimensionality, computer speed, storage and the time-varying nature of actual power systems is additionally 

discussed in [3]. A technique for processing the measured data from electric power networks in order to obtain 

the best possible estimate of system variables. Making use of Taylor series and a least-squares criterion is 

outlined in [4]. A fast decoupled SE technique based on equivalent current injections and rectangular co-

ordinates is discussed in (5). This actually is a break through technique as it resulted in identical sub gain 

matrices that needed to be updated and factorized only once. This technique, promising from the point of view 

of speed and applicability tends to generate a compromising estimate, by maintaining same weighting factors for 

both real and reactive components.  

In order to solve SE problem, an alternative formulation of the state estimation problem, Weight Least 

Absolute Values (WLAV) has been used. The transformation-based WLAV estimator with leverage points are 

viewed in [6]. Leverage points are uniformly disbursed in the factor space of multiple regressions through linear 

transformations. This transformed system of measurement equations is then used to obtain the WLAV estimator 

for the system states. The paper [7] addresses the application of interior point methods to the Weighted Least 

Absolute Value state estimation problem. The IRLAV [8] method is almost the same as WLAV, except that the 

weights are routinely changed to fit new conditions during the iterations based on the measurement residuals. A 

fast decoupled WLAV state estimator with a constant Jacobian matrix realized through a few assumptions has 

been developed [9] and the technique, even faster, has generated an estimate which reflected the impact of 

assumptions made. 

The line flow and bus voltage magnitude load flow model presented in (10) has been used in this paper 

to develop a similar SE model which has been solved using WLS technique by applying PSO and WIPSO 

algorithms. This method tends to avoid most of the factorization related matrix manipulation problems 

mentioned so far. 
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Presence of bad data has a substantial impact over the quality of the estimate generated by the least 

squares based estimator and therefore special techniques have been needed to identify them and quantify their 

effects. A linear recursive bad data identification technique based on power system decomposition has been 

presented in (11). Neural network based filter has been applied for bad data detection and identification in(12) in 

which once trained , the filter rapidly identifies most measurement errors simultaneously by comparing the 

square difference of raw measurements and their corresponding estimated values with some given thresholds. 

Bad data prefiltering using wavelet transform has been presented in (13) and this approach identifies and filters 

out the bad data even before the state estimation algorithm estimates the system state. An identification 

algorithm based on the largest normalized residual considering statistical correlation among the measurements is 

presented in (14). As the proposed method here uses a constant Jacobian, unlike the conventional WLS 

estimator, the impact of bad measurements over the estimate has been considerably reduced and hence it doesn’t 

require a separate algorithm to filter out the bad measurements. Over the past few decades soft computing 

algorithms have been playing a major role in solving optimization problems. Evolutionary programming 

algorithms are promising from the point of view of their capability to evade local maxima and minima. Out of 

the many evolutionary algorithms PSO has been widely used from the point of view of assured convergence and 

programming flexibility. PSO algorithm has been successfully implemented for solving the problem of SE in 

spite of the apprehensions such as larger computational time etc (15). In this work a line flow based WLAV 

state estimation problem has been formulated and it has been solved through BBO and WIPSO techniques in the 

absence as well as the presence of bad measurements for various standard IEEE test systems. 

 

II. Problem Formulation 
 2.1 Conventional WLAV State Estimation 

The WLS estimator is not a robust one because of its quadratic objective function. Therefore, an 

estimator involving non-quadratic objective function is used. This estimator offers a more robust estimation, 

which is obtained by minimising 
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Since the above objective minimises the absolute value of the error weighted by the measurement accuracy
2

j , it is commonly called as the WLAV estimator.  

The objective of Eq. (1) is reformulated using LP in order to solve the WLAV problem: 
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A SE solution is obtained by solving the LP problem given by Eq. (3) iteratively for x  until x  is 

sufficiently small. This method is highly inefficient, as it requires large computer memory and involves the time 

consuming LP technique, which itself is an iterative process and hence not suitable for real time applications. 

However this algorithm is robust and stable in the sense that it has the inherent feature of rejecting bad 

measurements by interpolating only ns  among the nz  measurements and free from ill-conditioning due to the 

effect of wide assignment of weighting factors and avoidance of factorisation and multiplication of several 

matrices. In this paper an attempt has been made to increase the computational efficiency of the robust WLAV 

technique through linearization. 

 

2.2. Proposed Method 

The real and reactive bus powers as a function of real line flows, reactive line flows and Vm
2
 can be written as 
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Treating P,Q and Vm
2
 as state variable[x], the measurement set [Z] can be represented as 

 𝑍 =  𝑓 𝑥                                                                                                                                                                                 6  
Where  
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 𝑍 = [𝑃, 𝑄, 𝑝, 𝑞, 𝑉2 ]𝑇    

The WLAV objective function can be written as  

𝑀𝑖𝑛 𝜑 =  𝑤𝑖  𝑍𝑖 − 𝑓𝑖 𝑥                                                                                                                                                   7 

𝑛𝑚

𝑖=1

 

The above equation does not include line capacitances and shunt susceptances and hence it is 

inadequate to estimate the system state. However the problem can be made solvable if constraint equations 

including branch voltage drop and phase angle drop are considered. These constraints can be represented as 

𝑕 𝑥 =  2𝑅𝑝 + 2𝑋𝑞 −  Λ𝐴1+
𝑇 +  𝐴1−

𝑇  𝑉2 = 0                                                                                                                   8  

𝑔 𝑥 = 𝐶𝑋𝑝 − 𝐶𝑅𝑞 − 𝐶𝛼 = 0                                                                                                                                               9  

The constrained optimization problem of equations 7, 8 and 9 can be formulated as a linear programming 

problem as 

𝑀𝑖𝑛 𝜑 =  𝑤𝑖  𝑆𝑖′ − 𝑆𝑖′′                                                                                                                                                 𝑛𝑚
𝑖=1 (10) 

Subject to 

𝐴.𝑥 + 𝑆 ′ − 𝑆 ′′ = 𝑍 − 𝑓 𝑥0  

𝐻.𝑥 = −𝑕 𝑥0    
𝐺.𝑥 =   −g(x0)                                 
Where  

A, H and G are the jacobian matrices formed by partially differenting f(x), h(x) and g(x) with respect to x. 

x is the state correction vector  

 S’ and S’’ are the slack variable vectors. 

The above LP problem can be solved iteratively for x till the algorithm converges. It is to be noted that the 

jacobian matrices A, H and G are constant matrices that require to be computed only at the beginning of the 

iterative process. However RHS vectors f(x), g(x) h(x) must be recomputed during iterative process. 

 

2.2.1 Introduction of BBO 

Biography is the study of distribution of species in nature. The species migrate from one island to 

exceptional islands which have good geographical condition. Every island is technically referred to as as habitat. 

The geographical areas are good geared up for extra species which might be named as high Habitat Suitability 

Index (HSI). Each habitat has unique features that characteristics habitability is known as Suitability Index 

Variables (SIV). The SIV of a habitat represents the rainfall, land discipline and temperature. The habitat stays 

in low HSI, the species reside in that habitat will tend to extinct. The emigration of species occur such habitats. 

In a similar fashion, the immigration additionally occurs when the habitat have immoderate HSI. The 

mathematical units of biogeography explains how species emigration and immigration within the habitats. The 

BBO algorithm is developed headquartered on the mathematics of biogeography. It really works established on 

two mechanisms named as migration and mutation. BBO is similar to the other population based optimization 

procedures. An island or a habitat and HSI are analogous to single population and fitness value in Genetic 

Algorithm (GA) respectively. Identical of these algorithms, BBO shares the information between the habitats. 

GA solutions die at the end of each generation. But BBO and PSO solutions survive forever. An identical group 

solution is clustered in PSO and not in GA and BBO.  

 

2.2.1.1 BBO Algorithm 

The BBO algorithm for LF based SE problem is described as follows. 

1. Read the system data. 

2. Initialize the BBO parameters like probability modification index, mutation rate, minimum and maximum 

value of emigration and immigration rates and Elite parameters. 

3. Start the generation. 

4. For each habitat, evaluate the objective function using equation (10). 

5. If G < maximum generation and best fit ≠ 1, otherwise go to step 13. 

6. Sort habitats based on its HSI. Keep the best HIS habitats (Elite HSI) and corresponding habitat (Elite 

Habitat) for the next generation. 

7. For each habitat, map the immigration rate λ and emigration rate µ. 

8. Probabilistically use λ and µ to modify each non elite habitat. 

9. Perform the mutation. 

10. Evaluate the fitness of each new habitat and sort. 

11. Replace the worst habitats with the Elite habitats 

12. set t=t+1 and go to step 5 

13. Store the best Habitat. 
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2.2.1.2 WIPSO Algorithm 

The WIPSO algorithm for LF based SE problem is described as follows. 

1. Choose the population size, the number of generations, Wmin, Wmax, C1min, C1max, C2min, C2max, pbest, 

gbest. 

2. Initialize the velocity and position of all particles randomly, ensuring that they are within  limits.    

Here the individuals represent the real and reactive power flows and bus voltage  magnitudes. 

3. Set the generation counter t=1. 

4. Evaluate the fitness for each particle using equation (10) according to the objective  function. 

5. Compare the particle’s fitness function with its 𝑃𝑏𝑒𝑠𝑡  𝑖 . If the current value is better than  𝑃𝑏𝑒𝑠𝑡  𝑖  ,then set 

𝑃𝑏𝑒𝑠𝑡  𝑖  is equal to the current value. Identify the particle in the neighborhood with the best success so far and 

assign it to Gbest. 

6. Update the value of the weight factor using equation (15). 

7. Update velocity by using the global best and individual best of the particle. 

8. Update position by using the updated velocities. Each particle will change its position. 

9. If the stopping criteria is not satisfied set t=t+1 and go to step 4.Otherwise stop. 
 

III. Simulation and Results 
The proposed LFBSE problem have been solved using BBO and WIPSO techniques by selecting a 

habitat size of 20 habitat modification probability =1, Immigration probability bounds per gene = {0, 1}, step 

size for numerical integration of probabilities =1, maximum immigration and migration rates of each island = 1 

and mutation probability =0.1, Maximum Generation =100.It has been verified on standard IEEE 14, 30 and 57 

bus test systems. The measurement vector has been generated by way of adding a small percentage of noise to 

the values obtained from the Newton Raphson load flow. Bus voltage magnitudes at the load buses and real and 

reactive power flows through the lines were taken as state variables. All the line flows, bus power injections and 

bus voltage magnitudes at the even numbered buses were considered in the measurement set to achieve 

necessary redundancy. To study the performance of the algorithm in the presence as well as absence bad 

measurements, in each of the measurement set, 5, 10 and 15 number of bad measurements were introduced 

randomly. The performance of the algorithm has been validated by evaluating the results of the proposed 

method against the results obtained using standard WLS state estimation and LFWLAV State Estimation. The 

algorithms were tested with a flat start and a convergence tolerance of 0.0001. Three performance indices are 

defined to validate the performance of the proposed technique. They are  ∆Vrms ,   ∆prms ,   ∆qrms . 
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Tables 1, 2 and 3 compare the performance of the proposed method with WLAV and LFWLAV estimation 

algorithm in terms of the performance indices defined in 1, 2 and 3 and NET. The performance of the algorithm 

is also illustrated through bar charts in Fig 1 to 12.  
 

Table 1: Results for IEEE 14 Bus Systems 

 

 

 

 

 

 

 

 

 

 

 

 

Measurements Method ΔVrms ΔPrms ΔQrms NET in ms 

0 

 

WLAV 0.1406 0.1351 0.1643 211 

LFWLAV 0.0883 0.1103 0.111 136 

LFWLAV-BBO 0.0789 0.1081 0.1086 148 

LFWLAV-WIPSO 0.0846 0.1088 0.1091 143 

5 

WLAV 0.1405 0.1286 0.1631 210 

LFWLAV 0.0882 0.1074 0.1094 136 

LFWLAV-BBO 0.0764 0.1027 0.1074 149 

LFWLAV-WIPSO 0.0837 0.1029 0.1081 144 

10 

WLAV 0.1363 0.1277 0.1573 212 

LFWLAV 0.0635 0.1034 0.1083 137 

LFWLAV-BBO 0.0513 0.1019 0.1071 149 

LFWLAV-WIPSO 0.0509 0.1027 0.108 144 

15 

WLAV 0.1349 0.1215 0.138 212 

LFWLAV 0.0246 0.1027 0.1078 137 

LFWLAV-BBO 0.0176 0.1011 0.1053 149 

LFWLAV-WIPSO 0.0179 0.1022 0.1065 146 
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Table 2: Results for IEEE 30 Bus Systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Measurements Method ΔVrms ΔPrms ΔQrms NET in ms 

0 

 

WLAV 0.1742 0.3824 0.2117 468 

LFWLAV 0.0755 0.2173 0.1325 189 

LFWLAV-BBO 0.0639 0.2127 0.1304 202 

LFWLAV-WIPSO 0.0646 0.2133 0.1313 197 

5 

WLAV 0.0833 0.3794 0.2109 469 

LFWLAV 0.0397 0.2159 0.1319 188 

LFWLAV-BBO 0.0303 0.2121 0.1295 201 

LFWLAV-WIPSO 0.0309 0.2129 0.1304 198 

10 

WLAV 0.0609 0.3756 0.2099 469 

LFWLAV 0.0328 0.2138 0.1311 189 

LFWLAV-BBO 0.0286 0.2112 0.1287 202 

LFWLAV-WIPSO 0.0298 0.2117 0.1296 198 

15 

WLAV 0.0454 0.3743 0.2081 469 

LFWLAV 0.0283 0.213 0.1305 189 

LFWLAV-BBO 0.0216 0.2003 0.1283 202 

LFWLAV-WIPSO 0.022 0.2012 0.1289 199 
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Table 3: Results for IEEE 57 Bus Systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

IV. Conclusion 
A novel line flow based state estimation technique which results in the formation of constant jacobian 

matrix has been presented in this paper and it has been solved through WLAV method. BBO and WIPSO 

technique had been implemented for solving the LFBWLAV problem in the presence as well as absence of bad 

measurements. The results point out that the normalized value of the error between the actual values and 

estimated values of the state variables is noticeably lesser in the case of proposed method when solved using 

BBO and WIPSO than that of the conventional WLAV and LFBWLAV techniques.  Further there is a marginal 

increase in computation time due to the heuristic search nature of BBO algorithm still as the estimated system 

state is closer to the actual system state in the proposed method; BBO method is very much suitable for security 

studies of power systems. 

 

V. References 
[1] Schweppe.F.C, Wildes. J., “power system static-state estimation, Part I: Exact Model”, IEEE Trans. on Power Apparatus and 

Systems, Vol.PAS-89, Issue: 1, 1970, pp. 120-125. 

[2] Schweppe. F.C.; Rom.D.B, “power system static-state estimation, Part II: Approximate Model”, IEEE Trans. on Power Apparatus 
and Systems, Vol.PAS-89, Issue: 1, 1970, pp. 125-130. 

[3] Schweppe. F.C., “power system static-state estimation, Part III: Implementation”, IEEE Trans. on Power Apparatus and Systems, 

Vol.PAS-89, Issue: 1, 1970, pp. 130-135. 

 

Measurements Method ΔVrms ΔPrms ΔQrms NET in ms 

0 
 

WLAV 0.0791 0.2579 0.1346 711 

LFWLAV 0.0288 0.1173 0.1091 233 

LFWLAV-BBO 0.0276 0.1148 0.107 257 

LFWLAV-WIPSO 0.0282 0.1152 0.1077 253 

5 WLAV 0.0788 0.2553 0.1332 709 

LFWLAV 0.0283 0.1164 0.1083 234 

LFWLAV-BBO 0.0254 0.1139 0.1053 257 

LFWLAV-WIPSO 0.0262 0.1145 0.1061 254 

10 WLAV 0.0782 0.2527 0.132 709 

LFWLAV 0.0272 0.1158 0.1071 232 

LFWLAV-BBO 0.0246 0.1133 0.1041 258 

LFWLAV-WIPSO 0.0252 0.1138 0.1048 254 

15 WLAV 0.0774 0.2502 0.1313 710 

LFWLAV 0.0258 0.115 0.106 232 

LFWLAV-BBO 0.024 0.1124 0.103 259 

LFWLAV-WIPSO 0.0246 0.1131 0.1038 254 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Schweppe%2C%20F.C..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wildes%2C%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Schweppe%2C%20F.C..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Schweppe%2C%20F.C..QT.&newsearch=true


Line Flow Based WLAV State Estimation using BBO and WIPSO Techniques  

DOI: 10.9790/1676-1105036773                                           www.iosrjournals.org                                   73 | Page 

[4] Larson.R, Tinney.W.F, Hajdu.L.P and Piercy.D.S, “State Estimation in Power Systems Part II: Implementation and applications”, 

IEEE Trans. on Power Apparatus and Systems, Vol.PAS-89, Issue: 3, 1970, pp. 353-363. 

[5] Whei-Min Lin and Jen-Hao Teng, “A new transmission fast-decoupled state estimation with equality constraints”, Electric Power 
and Energy Systems, Vol. 20, No.7, 1998, pp.489-493. 

[6] M.K. Celik and A. Abur, “A robust WLAV state estimator using transformation”, IEEE Trans. on Power Systems, 1992, 7(1): 106-

112. 
[7] H. Singh F.L. Alvarado, “Weighted Least Absolute Value State Estimation using Interior Point Method”, IEEE Transactions on 

Power Systems, 1994, 9(3). 

[8] R.A. Jabr and B.C.Pal, “Iteratively reweighted least-square implementation of the WLAV state estimation method”, IEE Proc. 
Gener. Transm. Distrib., 2004, 151(1): 103-108. 

[9] R.Neela and R.Ashokumar, “A robust decoupled WLAV state estimation for power system”, International Journal of Engineering 

Science and Technology, 2010, 2(8): 3590-3596. 
[10] P.Yan, A.Sekar, “Study state analysis of power system having multiple Facts devices using line flow based equations”, IET 

Proceedings-Generation Transmission and Distribution, 2005, Vol.152, Issue 1, pp.31-39. 

[11] B.M.Zhang, S.Y.Wang and N.D.Xiang, “A linear recursive bad data identification method with real time application to power 
system state estimation”, IEEE Trans. on Power Systems, 1992, Vol.7, No.3, pp.1378-1385. 

[12] H.Salehfar, R.Zhao,” A neural network preestimation filter for bad-data detection and identification in power system state 

estimation”, Electric Power System Research, 1995, Vol.34, pp.127-134. 
[13] D.Singh, R.K.Misra, V.K.Singh R.K.Pandey, “Bad data pre-filter for state estimation”, Electric Power and Energy Systems, 2010, 

Vol. 32, pp.1165-1174. 

[14] Eduardo Caro, Antonio J.Conejo, Robert Minguez, Marija Zima and Goran Anderson,“Multiple bad data identification considering 
measurement dependencies”, IEEE Trans. IEEE Trans. on Power Systems, 2011, Vol.26, No.4, pp.1953-1961 

[15] D.H.Tungadio, B.P.Numbi, M.W.Siti, A.A.Jimoh, “Particle swarm optimization for power system state estimation”, 

Neurocomputing, 2015, Vol.148, pp. 175-180.  
 

 


